

Anaerobic digestion feedstocks and opportunities for macroalgae conversion

David P. Chynoweth, Professor Emeritus

Agricultural and Biological Engineering

University of Florida

Reference

Chynoweth, D. P. (2002). Review of Biomethane from Marine Biomass. A report prepared for Tokyo Gas Company. 2002.

http://www.agen.ufl.edu/~chyn/download/Publications

Biomass Program Sponsors

- American Gas Association/Gas Research Institute
- US DOE/ERDA/SERI
- US Navy
- EPRI
- NYSERDA
- University of Florida IFAS

Major Biomass Program Contractors

- University of Florida
- Institute of Gas Technology
- Syracuse University
- Texas A & M
- Cornell University
- Cal Tech. U.
- State University of New York
- Neushul Mariculture
- Harbor Branch
- Waste Management
- Walt Disney World
- General Electric
- Reynolds, Smith, & Hills
- Radian (URS)

Gas Research Institute Biomass Energy Feedstocks

- Terrestrial Biomass
 - » herbaceous: sorghum, Napiergrass, energycane
 - » woody: poplar, willow
- Aquatic Biomass
 - » kelps (Macrocystis, Gracilaria)
- Community Wastes
 - water hyacinth, biosolids
 - » municipal solid wastes

Energy Potential from Biomass and Wastes in the U.S.

Resource	EJ/yr
Municipal Solid Waste	1.5
Sewage Sludge and Sludge-	
Grown Biomass	8.0
Biodegradable Industrial Wastes	0.4
Crop Residues	4.1
Logging Residues	0.3
Animal Wastes	0.4
Energy crops	
land-based	22.0
marine	>100.
Total (excluding marine)	29.5

Advantages of Anaerobic Digestion

- can process wet or dry feeds
- does not require pure or defined mixed cultures
- does not require pretreatment for depolymerization
- produces less microbial biomass
- reduces animal and plant pathogens
- Low process energy requirements

Biogas Use Options

- Direct Combustion/Co-generation
 - » cooking/heating/hot water
- Light (gas lights)
- Appliances (refrigerator, freezer, A/C)
- Electricity Generation
- Vehicular Fuel
- Gas Pipeline

Residue Use Considerations

- use as compost
 - » high in inorganic nutrients
 - improves water retention
 - » low odor levels
 - » pathogens
 - mesophilic digestion gives poor reduction
 - thermophilic digestion give good reduction
 - best to maintain at 70°C for one hour
- should cure prior to use as compost
 - removes volatile acids and sulfides
- use for refeeding (solids contain ~14% protein)

Factors InfluencingFeedstock Selection

- biodegradability (biochemical methane potential, conversion rate)
- nutrient content
- total and volatile solids content
- inhibitors (e.g. salt, ammonia, industrial chemicals)
- growth properties

Operating Parameters

- Inoculum
- temperature, 35C or 50C
- loading rate, kg/m³
- start-up
- nutrients
- mixing
- inhibition

Performance Parameters

- gas and methane yields, m³/kg vs and production rates, m³/m³ dig vol
- organic matter reduction (VS, COD)
- organic acids, pH, alkalinity

Factors Influencing Reactor Design

- chemical characteristics of feed
- concentration of biodegradable matter
- concentration of feed particulate solids
- scale of application
- continuity of feed availability
- desired products
- site

Biomass Energy Program Elements

- biomass production
- harvesting, storage, processing
- conversion via anaerobic digestion
- residue use
- biogas processing
- systems analysis
- basic research

Approach to AD Process Development

Biochemical Methane Potential FLORIDA (BMP) Reactors

Typical Biochemical Methane Potential Plots

Biochemical Methane Potential (BMP) Summaries

Table 65. Summary of biochemical methane potential ranges for several biomass and waste samples. (Chynoweth et al. 1993)

Sample	Lg ⁻¹ Vs
All samples	0.014 - 0.94
All seaweeds	0.26 - 0.40
All grasses	0.16 - 0.39
All woods	0.014 - 0.32
Samples with high values	
Vegetable oil Primary sludge Food waste	0.94 0.59 0.54
Samples with low values	
Eucalyptus Pine Bambo	0.014 0.059 0.016
Avicel cellulose	0.37

BMP Data for Marine Algae

Genus	Decomposition % VS* redn.	L (g VS) ⁻¹	Methane Yield Mg-C (Mg VS) ⁻¹
<u>Gracillaria</u>	50 - 85	0.28 - 0.40	0.15 - 0.21
<u>Laminaria</u>	46 - 60	0.23 - 0.30	0.12 - 0.16
<u>Sargassum</u>	12 - 30	0.06 - 0.19	0.03 - 0.10
<u>Macrocystis</u>	34 - 80	0.14 - 0.40	0.08 - 0.21
<u>Uiva</u>	62	0.31	0.17

Feed Nutrient Requirements

TABLE 7.1 Nutrient Ratios of Biomass and Waste Feedstocks*			
Feedstock	Carbon/nitrogen	Carbon/phosphorus	
Aquatic Kelp	15	84	

Water hyacinth Herbaceous 194 Bermuda grass 40 527 Napier grass 278 41 Cattail Woody 446 490 Eucalyptus 2 480 178 Sycamore 2 600 432 Loblolly pine Wastes 50 Primary sludge 76 204 Municipal solid waste

10

94

^{*}Data from Ref. 5.

Anaerobic Digester Designs For Different Feedstocks

Feedstocks	Design Options
Low Solids (<2% T.) sol. ind. wastes, biomass pressate, acid-phase effluent	anaerobic filter, fluidized bed, anaerobic contact, UASB
Medium Solids (2-15% T.S.) sewage sludge, part. indust. wastes, aquatic/marine plants	CSTR, solids-concentrating, multi-stage
High Solids (>20% T.S.) MSW, indust. wastes, grasses, wood	CSTR, leachbed, multi-stage

Kelp Economics

Renewable Methane from Biomass

Cost Estimates for Production of Biomethane from Energy Crops

Energy Feedstock	Methane Cost
	U.S. \$ per GJ
grass (sorghum)	6-8
wood (poplar)	3-7
seaweed (kelp)	6-14
wastes	2-3

Results and Conclusions for Marine Biomass

- Marine biomass has the potential for supplying all of our energy needs
- Conversion of marine biomass by anaerobic digestion is effective but requires enrichment of salt tolerant microbes
- The solids-concentrating reactor improves conversion kinetics
- Marine biomass energy costs 5-6 times that of fossil fuel energy
- Near-shore farms are more cost effective
- The major unknown is biomass yield in field conditions

Results and Conclusions for Herbaceous Biomass

- Sorghum is ideal feedstock because of its high yields, geographic diversity, and high conversion rates
- Ensiling is a good method for preserving feeds without loss in energy potential
- Leachbed reactor is best design in terms of cost and stable performance
- Methane enrichment is possible using stripping and pH/pressure swing
- Cost is about 3X that of fossil fuels

Net Energy

We believe that to maintain society's current level of infrastructure and information processing, a net energy of about 4/1 is required.